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PRERESOLUTIONS OF
NONCOMMUTATIVE ISOLATED SINGULARITIES

JI-WEI HE AND YU YE

We introduce the notion of right preresolutions (quasiresolutions) for noncom-
mutative isolated singularities, which is a weaker version of quasiresolutions in-
troduced by Qin, Wang and Zhang ( J. Algebra 536 (2019), 102–148). We prove
that right quasiresolutions for a noetherian bounded below and locally finite
graded algebra with right injective dimension 2 are always Morita equivalent.
When we restrict to a noncommutative quadric hypersurface A, we prove that
if A is a noncommutative isolated singularity, then it always admits a right
preresolution. We provide a method to verify whether a noncommutative
quadric hypersurface is an isolated singularity. An example of noncommuta-
tive quadric hypersurfaces with detailed computations of indecomposable max-
imal Cohen–Macaulay modules and right preresolutions is included as well.

Introduction

Let R be a commutative normal Gorenstein domain. Van den Bergh [2004] intro-
duced the notion of noncommutative crepant resolutions of R. Roughly speaking, a
noncommutative crepant resolution of R is an R-algebra of the form 3 = EndR(M),
where M is a reflexive R-module satisfying certain homological conditions. Iyama
and Reiten [2008] extended the notion of noncommutative crepant resolutions
to module-finite commutative algebras over a noetherian commutative Cohen–
Macaulay ring. Let R be a commutative Cohen–Macaulay equi-codimensional
normal Gorenstein domain with a canonical module. It has been proven that non-
commutative crepant resolutions of R, if they exist, are always derived equivalent
provided dim R ≤ 3 (see [Iyama and Reiten 2008, Corollary 8.8; Iyama and Wemyss
2013, Theorem 1.5]).

In order to study noncommutative singularities, Qin, Wang and Zhang extended
the notion of noncommutative resolutions to noncommutative algebras which are
possibly not module-finite over their centers (see [Qin et al. 2019b]). Let A be a
(both left and right) noetherian algebra over a field k, and let ∂ be a symmetric
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dimension function of the category of right A-modules. Two right A-modules M
and N are said to be s-isomorphic (see [Qin et al. 2019b]) if there is a right
A-module P and two homomorphisms f : P → M and g : P → N such that the
∂-dimensions of the kernels and the cokernels of f and g are no larger than s. The
following definition was given in [Qin et al. 2019b].

Definition 0.1. Let A be a (both left and right) noetherian algebra with ∂-dimension d.
If there is a noetherian Auslander regular ∂-Cohen–Macaulay algebra B with
∂-dimension d and two finitely generated bimodules B MA and A NB such that
M ⊗A N is (d−2)-isomorphic to B and N ⊗B M is (d−2)-isomorphic to A as
bimodules, then B is called a noncommutative quasiresolution of A.

Qin, Wang and Zhang proved that noncommutative quasiresolutions of a noether-
ian algebra A with ∂-dimension 2 are Morita equivalent. If ∂-dimension of A is 3,
then noncommutative quasiresolutions of A are derived equivalent (with further
assumptions on A; see [Qin et al. 2019b, Theorem 0.6]). Thus, they generalized the
corresponding results in [Iyama and Reiten 2008] and [Iyama and Wemyss 2013].

If, further, A is Auslander–Gorenstein and ∂-Cohen–Macaulay, then the algebra B
in Definition 0.1 is isomorphic to the endomorphism algebra EndA(U ) for some bi-
module BUA which is reflexive on both sides (see [Qin et al. 2019b, Corollary 3.13]).

Unlike the commutative case, given a noncommutative noetherian algebra A
and a finitely generated right A-module U, it is usually a tough task to check
whether EndA(U ) is a noetherian algebra. In this sense, to find a noncommutative
quasiresolution of a noetherian algebra is not an easy job in general.

In this paper, we only consider the noncommutative resolutions of noncommu-
tative graded isolated singularities (see Section 2), which allows us to drop some
restrictions on the algebras as given in Definition 0.1.

Now let A be a bounded below graded algebra, that is, A =
⊕

i∈Z Ai with
Ai = 0 for i ≪ 0. Assume A is right noetherian and locally finite. Let gr A be the
category of finitely generated graded right A-modules, and tors A the subcategory
of gr A consisting of finite-dimensional modules. Let qgr A = gr A/tors A. We
introduce the following version of noncommutative resolutions of right noetherian
algebras, which is much closer to Van den Bergh’s [2004] original definition of a
noncommutative crepant resolution.

Definition 0.2 (more precisely, see Definition 2.1). Let A be a right noetherian
graded algebra which is bounded below and locally finite with injective dimension
injdim AA = d < ∞. If there is a small maximal Cohen–Macaulay (see Section 2)
module MA with B = EndA(M) such that

(i) r. gldim(B) = d, where r. gldim is the right global dimension,
(ii) the functor HomA(M, −) : gr A → gr B induces an equivalence qgr A ∼= qgr B,

then we call B a right preresolution of A.
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If, further, B is right generalized Artin–Schelter regular (see Definition 1.3),
then we call B a right quasiresolution of A.

We have the following result (see Theorem 2.3) parallel to the ones in [Iyama
and Reiten 2008; Iyama and Wemyss 2013; Qin et al. 2019b]. We remark that
our proof is quite different from theirs. In fact, the algebras considered in those
works are assumed to be noetherian on both sides, while we only assume the right
noetherianity here.

Theorem 0.3. Let A be a right noetherian graded algebra which is bounded
below and locally finite with injective dimension injdim AA = 2. If A has a right
quasiresolution, then

(i) A is CM-finite, that is, there are only finitely many nonisomorphic indecom-
posable maximal Cohen–Macaulay (MCM) right A-modules (up to degree
shifts);

(ii) any two right quasiresolutions of A are graded Morita equivalent.

If A is an AS-Gorenstein algebra (see Definition 1.1) which is a noncommuta-
tive isolated singularity, then the CM-finiteness will induce the existence of right
preresolutions, as shown in the following results (see Theorems 3.2 and 3.6).

Theorem 0.4. Let A be an AS-Gorenstein algebra which is a noncommutative
isolated singularity.

(i) Let MA be an MCM module. Then EndA(M) is a right noetherian graded
algebra.

(ii) Assume that A is CM-finite and injdim A ≥ 2. Let {P0 = A, P1, . . . , Pn} be
the set of all the nonisomorphic indecomposable MCM modules (up to degree
shifts). Let M =

⊕n
i=1 Pn ⊕ A. Then B := EndA(M) is a right preresolution

of A.

Let S be a quantum polynomial algebra (see Section 4), that is, S is a Koszul
AS-regular algebra with Hilbert series

HS(t) =
1

(1 − t)n

for some n ≥ 1. Pick a central regular element ϖ ∈ A of degree 2. The quotient
algebra A = S/Sϖ is called a noncommutative quadric hypersurface. Note that a
noncommutative quadric hypersurface is CM-finite if and only if it is a noncommu-
tative isolated singularity (see [Mori and Ueyama 2019, Theorem 4.13]). Hence a
noncommutative quadric hypersurface A which is also a noncommutative isolated
singularity always admits a right preresolution, and to find such a preresolution it
suffices to compute all the indecomposable MCM-modules of A.
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Assume A is a noncommutative quadric hypersurface with injective dimension d .
Let �d(kA) be the d-th syzygy of the trivial module kA. Set

M := �d(kA)(d).

Then M is a Koszul MCM module. Associated to A, Smith and Van den Bergh
constructed a finite-dimensional algebra C(A), and proved that the stable category
of MCM modules over A is equivalent to the derived category of C(A). In this
paper, we prove the following results, which provides a relatively easy way to
compute the algebra C(A) and to find all the indecomposable MCM modules of A.
Consequently, we show a method to construct a right preresolution of A in case A
is a CM-finite.

Theorem 0.5 (see Theorems 4.6 and 4.11). Let S be a quantum polynomial algebra,
and let ϖ ∈ A be a central regular element of degree 2. Set A := S/Sϖ . Then:

(i) Endgr A(M) ∼= C(A).

(ii) A is a noncommutative isolated singularity if and only if Endgr A(M) is
semisimple.

(iii) Assume A is a noncommutative isolated singularity. Then B = EndA(M ⊕ A)

is a right preresolution of A.

We remark that the second statement of the above theorem follows from [He and
Ye 2019, Theorem 6.3] (see also [Mori and Ueyama 2019, Theorem 4.13]).

In view of Theorem 0.5, some properties of indecomposable MCM modules
of A are obtained in Section 4. We provide a concrete example of quadric hyper-
surfaces with detailed computations of indecomposable MCM modules and right
preresolutions in the last section.

1. Preliminaries

Throughout, k will be a field of characteristic zero and all algebras considered are
over k.

Let A be a Z-graded k-algebra. We denote by Gr A the category of graded
right A-modules, and by HomGr A(M, N ) the set of homogeneous right A-module
homomorphisms which preserve the degrees of elements for M, N ∈ Gr A. For
k ∈ Z, M(k) is the graded right A-module such that M(k)n = Mn+k . We write
HomA(M, N ) =

⊕
k∈Z HomGr A(M, N (k)), and Exti

A(M, N ) for the derived func-
tor of HomA(M, N ). In particular, we write EndA(M) for HomA(M, M).

Let PHomGr A(M, N ) be the subset of HomGr A(M, N ) consisting of homo-
morphisms which factor through some graded projective modules, and let

PHomA(M, N ) =

⊕
k∈Z

PHomGr A(M, N (k)).
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The set of graded stable homomorphism is denoted by

SHomA(M, N ) = HomA(M, N )/ PHomA(M, N ).

Let A be a right noetherian graded algebra, and let gr A be the full subcategory
of Gr A consisting of finitely generated modules. A graded right module M ∈ Gr A
is called a torsion module if for every m ∈ M, the right submodule m A is finite-
dimensional. Let Tors A be the full subcategory of Gr A consisting of all the
torsion modules, and let tors A be the full subcategory of Tors A consisting of finite-
dimensional objects. Since A is right noetherian, Tors A (resp. tors A) is a Serre
subcategory of Gr A (resp. gr A). The quotient categories QGr A = Gr A/ Tors A
and qgr A = gr A/ tors A are both abelian and qgr A is an abelian subcategory of
QGr A. Let π : Gr A → QGr A be the projection functor. Then π has a right adjoint
functor ω : QGr A → Gr A such that πω ∼= id.

For M ∈ Gr A, we write M = π(M). The Hom-sets in QGr A is defined by

HomQGr A(M,N ) = lim
−−→

HomGr A(M ′, N/0(N )),

where 0(N ) is the maximal torsion submodule of N, and the limit runs over all the
submodules M ′

⊆ M such that M/M ′ is a torsion module. We refer to [Artin and
Zhang 1994] for more information about the quotient categories QGr A and qgr A.

A graded algebra A is locally finite if dim An <∞ for all n ∈ Z, and A is bounded
below if An = 0 for all n ≪ 0. If A0 = k and An = 0 for all n < 0, then A is said to
be connected graded.

We recall the following classical definition (see [Artin and Schelter 1987]).

Definition 1.1. Let A be a (both left and right) noetherian connected graded algebra.
A is called an Artin–Schelter Gorenstein algebra of dimension d if

(i) injdimA A = injdim AA = d < ∞;

(ii) Exti
A(kA, AA) = 0 for all i ̸= d , and Extd

A(kA, AA) ∼= Ak(l) for some l;

(iii) the left version of (ii) is satisfied.

If, further, gldim A = d, then A is called an Artin–Schelter regular algebra. The
integer l is usually called the Gorenstein parameter of A.

Note that we do not require the finiteness assumption on the Gelfand–Kirillov
dimension of A in the above definition. We remark that in the original definition (see
[Artin and Schelter 1987]), A is assumed to have finite Gelfand–Kirillov dimension.

We need a more general version of Artin–Schelter Gorenstein algebras in this
paper. If not otherwise stated, we always assume that A is a right noetherian graded
algebra which is locally finite and bounded below. Let J (A) be the graded Jacobson
radical of A. The following properties are well-known to experts; see Lemma 3.2
and Proposition 3.3 of [Chan et al. 2019] for instance.
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Lemma 1.2. Retain the notation as above.

(i) A/J (A) is finite-dimensional.

(ii) J (A0) = J (A) ∩ A0, where J (A0) is the Jacobson radical of A0.

(iii) J (A) ⊇ A≥n0 for some integer n0, and
⋂

n≥0 J (A)n
= 0.

We generalize Artin–Schelter Gorenstein algebras to right noetherian bounded
below algebras.

Definition 1.3. Let A be as above and J = J (A) be the graded Jacobson radical of A.
We call A a right generalized Artin–Schelter Gorenstein algebra of dimension d if

(i) injdim AA = d < ∞,

(ii) Exti
A(A/J, A) = 0 for all i ̸= d ,

(iii) Extd
A(A/J, A) is annihilated by J when viewed as a left A-module, and

Extd
A(A/J, A) is invertible as a graded A/J -A/J -bimodule.

If, further, r. gldim(A) = d, then we call A a right generalized Artin–Schelter
regular algebra.

We abbreviate “Artin–Schelter” to AS, and “generalized Artin–Schelter” to GAS.

Remark 1.4. The notion of GAS-Gorenstein algebras is a slight generalization of
the ones in [Reyes and Rogalski 2021, Definition 1.4] and [Minamoto and Mori
2011, Definition 3.1], where the algebras considered are N-graded. In [Chan et al.
2019, Definition 3.9], the authors assume that the algebra A is noetherian, and
admits a balanced dualizing complex.

Let 0 : gr A → gr A be the torsion functor, that is,

0(M) = {m ∈ M | dimk(m A) < ∞}.

The i-th right derived functor of 0 is denoted by Ri0. By Lemma 1.2, we have
0 ∼= limn→∞ HomA(A/J n, −). For M ∈ gr A, the depth of M is defined to be

depth(M) = min{i | Ri0(M) ̸= 0}.

Then depth(M) is either a nonnegative integer or ∞. The following lemma is
classical for connected graded algebras, and the proof for connected case applies
also to our case.

Lemma 1.5. depth(MA) = min{i | Exti
A(A/J, M) ̸= 0}.

Recall that π : Gr A → QGr A has a right adjoint functor ω : QGr A → Gr A.

Lemma 1.6. Let MA be a finitely generated module. If depth(MA) ≥ 2, then
ωπ(M) ∼= M.
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Proof. Rewriting the exact sequence (3.12.3) of [Artin and Zhang 1994], we obtain
the following exact sequence

0 → 0(M) → M → ωπ(M) → R10(M) → 0.

Since depth(MA) ≥ 2, it follows that ωπ(M) ∼= M. □

A useful homological identity in the theory of AS-Gorenstein algebras is the
Auslander–Buchsbaum formula (see [Jørgensen 1998, Theorem 3.2] for a noncom-
mutative version), which provides an effective way to calculate the depth of a module
over a local ring. For our purpose, it will be helpful to have a more general version
of the Auslander–Buchsbaum formula for right GAS-Gorenstein algebras. We
mention that the proof is a modification of that of [Jørgensen 1998, Theorem 3.2].

Theorem 1.7 (Auslander–Buchsbaum formula). Let A be a right GAS-Gorenstein
algebra, and MA ∈ gr A. Suppose projdim(MA) < ∞. Then

projdim(MA) + depth(MA) = depth(AA).

Proof. If injdim AA = 0, then it is clear. Assume injdim(AA) = d ≥ 1 and
projdim(MA) = p. Take a graded projective resolution of the right module A/J :

· · · → P−2
→ P−1

→ P0
→ A/J → 0,

where each P i is finitely generated for all i . Applying HomA(−, A) to the resolution,
we obtain the sequence

(1.7.1) 0 → HomA(P0, A) → HomA(P−1, A) → HomA(P−2, A) → · · · .

Take a minimal graded projective resolution

(1.7.2) 0 → Q−p
→ · · · → Q−1

→ Q0
→ M → 0

of M. By taking the tensor product of (1.7.2) and (1.7.1) we obtain a double complex
...

��

...

��

...

��

Q−2
⊗A HomA(P0, A)

��

// Q−2
⊗A HomA(P−1, A)

��

// Q−2
⊗A HomA(P−2, A)

��

// · · ·

Q−1
⊗A HomA(P0, A)

��

// Q−1
⊗A HomA(P−1, A)

��

// Q−1
⊗A HomA(P−2, A)

��

// · · ·

Q0
⊗A HomA(P0, A) // Q0

⊗ HomA(P−1, A) // Q0
⊗ HomA(P−2, A) // · · ·

Temporarily write X for the total complex of the above double complex. Denote
by F I X the filtration on X defined by the rows, and by F I I X the filtration on X
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defined by the columns. The second page of the spectral sequence induced by the
filtration F I X is

Ers
2 = TorA

r (M, Exts
A(A/J, A)).

Note that P i and Q j are finitely generated projective modules for all i and j. We
have natural isomorphisms

Qi
⊗A HomA(P j , A) ∼= HomA(P j , Qi ) for all i and j .

Hence each column of the above diagram is exact except at the final position, whose
homology group is isomorphic to HomA(P j , M). Therefore, the spectral sequence
induced by the filtration F I I X collapses at the first page, and the second page of
this spectral sequence is

Ext j
A(A/J, M), j ≥ 0.

Hence we obtain a convergent spectral sequence

(1.7.3) Ers
2 = TorA

r (M, Exts
A(A/J, A)) ⇒ Exts−r

A (A/J, M).

By assumption, Exts
A(A/J, A) = 0 for s ̸= d and Extd

A(A/J, A) ∼= V for
some graded invertible A/J -A/J -bimodule V. Thus the spectral sequence (1.7.3)
collapses at the second page. Since the resolution (1.7.2) is minimal, we have
TorA

r (M, V ) ∼= Q−r
⊗A V, and hence TorA

r (M, V ) ̸= 0 for each 0 ≤ r ≤ p for V is
invertible. Therefore, Extd−p

A (A/J, M) ̸= 0 and Exti
A(A/J, M)=0 for all i <d−p.

By Lemma 1.5, depth(M)= d− p. The Auslander–Buchsbaum formula follows. □

2. Noncommutative resolutions

Noncommutative crepant resolutions for commutative Gorenstein algebras were
introduced in [Van den Bergh 2004]. Noncommutative quasiresolutions for non-
commutative Auslander–Gorenstein algebras were introduced in [Qin et al. 2019b].
In this section, we will modify the definition of noncommutative resolutions of
[Qin et al. 2019b] and give an alternative version of noncommutative resolutions
for noncommutative isolated singularities.

Let A be a right noetherian graded algebra which is bounded below and locally
finite. Recall that A is called a noncommutative isolated singularity (see [Ueyama
2013]), if qgr A has finite global dimension, i.e., there is an integer n0 ≥ 0 such that
Extiqgr A(π(M), π(N )) = 0 for all i > n0 and M, N ∈ gr A.

A finitely generated graded right A-module M is said to be small if the following
conditions are satisfied:

(i) EndA(M) is a right noetherian graded algebra, and

(ii) HomA(M, N ) is a finitely generated graded right EndA(M)-module for any
N ∈ gr A.
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Let MA be a small A-module and let B =EndA(M). Since M is finitely generated
and A is bounded below and locally finite, B is also bounded below and locally
finite, and we have an additive functor

F = HomA(M, −) : gr A → gr B.

If K is a finite-dimensional graded right A-module, then HomA(M, K ) is a
finite-dimensional graded right B-module. For X, Y ∈ gr A, let f : X → Y be a
homomorphism such that both ker f and coker f are finite-dimensional. Let f∗ =

HomA(M, f ). It is not hard to see both ker f∗ and coker f∗ are finite-dimensional.
Therefore, the functor F induces a functor F : qgr A → qgr B which fits into the
commutative diagram

(2.0.1)

gr A

π

��

F // gr B

π

��

qgr A F // qgr B

Suppose that A has finite injective dimension injdim AA = d. Recall that a
finitely generated graded right A-module M is called a maximal Cohen–Macaulay
module (MCM module, for simplicity) if Ri0(M) = 0 for all i ̸= d.

Definition 2.1. Let A be a right noetherian graded algebra which is bounded below
and locally finite with injective dimension injdim AA = d < ∞. If there is a small
MCM module MA such that

(i) r. gldim(B) = d, where B = EndA(M),

(ii) the functor F , as in the diagram (2.0.1), is an equivalence,

then we call B a right preresolution of A.
If, further, B is right GAS-regular, then we call B a right quasiresolution of A.

Remark 2.2. (1) A right noetherian graded algebra which admits a right preresolu-
tion is automatically a noncommutative isolated singularity. This follows from the
well-known fact that the global dimension of qgr B is not greater than that of gr B,
see for instance [Artin and Zhang 1994, Section 7].

(2) The above definition is a modification of [Qin et al. 2019b, Definition 0.5]
for noncommutative isolated singularities, where the algebra B is assumed to be a
(both left and right) noetherian Auslander regular and Cohen–Macaulay N-graded
algebra. We will show some examples of right preresolutions and right quasiresolu-
tions for right GAS-Gorenstein algebras in the subsequent sections. We consider
nonpositively graded algebras because a noncommutative resolution of a noetherian
algebra may not be positively graded in general.
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(3) Assume that a noetherian graded locally finite algebra B is a quasiresolution of
a noetherian graded algebra A in sense of Qin, Wang and Zhang. If the dimension
function ∂ in [Qin et al. 2019b, Definition 0.5] is taken to be the Gelfand–Kirillov
dimension, then, by [loc. cit., Lemma 1.9 and Corollary 3.13], B is a right pre-
resolution of A in our sense. Besides, the Auslander regularity and Cohen–Macaulay
hypothesis on a quasiresolution B in [loc. cit., Definition 0.5] imply that B is a GAS-
regular algebra (see [Qin et al. 2019a, Lemma 1.10]). Therefore, if the dimension
function ∂ in [Qin et al. 2019b, Definition 0.5] is taken to be the Gelfand–Kirillov
dimension, then the concept of noncommutative quasiresolutions defined in [Qin
et al. 2019b] implies right quasiresolution in our sense.

(4) Quasiresolutions of invariant subalgebras of finite group actions on regular
algebras usually satisfy the conditions in (3). For example, let S = k−1[x1, . . . , xn]

with n ≥ 2, the skew polynomial algebra. Assume that G is a finite subgroup
of Autgr(S). If G is small (i.e., G does not contain a psuedoreflection when
viewed as a subgroup of GL(V ), where V = span{x1, . . . , xn}), then by [Bao et al.
2019, Theorem 2.6] and [Bao et al. 2018, Theorem 0.8], the skew group algebra
B(:= S ∗ G) is a quasiresolution both in sense of Qin, Wang and Zhang and of ours.

A right noetherian graded locally finite algebra with finite right injective dimen-
sion is said to be CM-finite if it has, up to degree shifts, finitely many nonisomorphic
indecomposable MCM modules.

Our main result of this section is as follows. It may be viewed as a noncommu-
tative version of [Iyama and Wemyss 2013, Theorem 1.5] in the dimension 2 case.

Theorem 2.3. Let A be a right noetherian graded algebra which is bounded below
and locally finite with injective dimension injdim AA = 2. Assume that A has a
right quasiresolution. Then

(i) A is CM-finite;

(ii) any two right quasiresolutions of A are graded Morita equivalent.

Proof. (i) By assumption, there exists some small MCM module MA such that
B = EndA(M) is a right quasiresolution of A. Consider the functor

F = HomA(M, −) : gr A → gr B

and the induced functor F : qgr A → qgr B. Then we have commutative dia-
gram (2.0.1). Take an MCM A-module N, and let X = HomA(M, N ). Then
X ∈ gr B. Since F is an equivalence, we have

Homqgr A(π(M), π(N )(k)) ∼= Homqgr B(F(π(M)),F(π(N )(k))), for all k ∈ Z.
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By the commutativity of (2.0.1),

Homqgr B(F(π(M)),F(π(N )(k)))

= Homqgr B(π(HomA(M, M)), π(HomA(M, N ))(k))

= Homqgr B(π(B), π(X)(k)).

Let J be the graded Jacobson radical of B. Since B/J is finite-dimensional
and X is finitely generated, we have

Homqgr B(π(B), π(X)(k)) = lim
n→∞

Homgr B(J n, X (k)).

From the exact sequence 0 → J n
→ B → B/J n

→ 0 we obtain the exact sequence

(2.3.1) 0 → lim
n→∞

Homgr B(B/J n, X (k)) → Homgr B(B, X (k))

→ lim
n→∞

Homgr B(J n, X (k)) → lim
n→∞

Ext1gr B(B/J n, X (k)) → 0.

By the commutative diagram (2.0.1), we have the following commutative diagram:

(2.3.2)

Homgr B(B, X (k)) // lim
n→∞

Homgr B(J n, X (k))

Homgr B(B, X (k)) //

=

OO

Homqgr B(π(B), π(X)(k))

=

OO

Homgr A(M, N (k)) //

F

OO

Homqgr A(π(M), π(N )(k)).

F

OO

Note that Homgr B(B, X (k)) = Xk = Homgr A(M, N (k)). It follows that the maps
in the left column of the diagram (2.3.2) are bijective. Since F is an equivalence,
the maps in the right column are bijective. Since N is MCM, then depth(N ) = 2.
It follows from Lemma 1.6 that Homqgr A(π(M), π(N )(k)) ∼= Homgr A(M, N (k)).
Therefore the bottom map in the diagram (2.3.2) is also bijective. Hence the top
map in the diagram (2.3.2) is an isomorphism.

By the exact sequence (2.3.1), we have, limn→∞ Homgr B(B/J n, X (k)) = 0 and
limn→∞ Ext1gr B(B/J n, X (k)) = 0 for all k ∈ Z. Hence 0(X) = R10(X) = 0. It
follows that depth(X) ≥ 2. Since r. gldim(B) = injdim AA = 2, we have that X is
a projective B-module by the Auslander–Buchsbaum formula (see Theorem 1.7).
Hence X ∈ add(B), where add(B) is the category of direct summands of direct
sums of finite copies of degree shifts of B. Therefore π(X) ∈ add(π(B)) and hence
π(N ) ∈ add(π(M)) for F is an equivalence. Since both M and N are MCM, it
follows that ωπ(M) ∼= M and ωπ(N ) ∼= N (see Lemma 1.6). Hence N ∈ add(M),
which implies that every indecomposable MCM module is a direct summand of M
(up to a degree shift). Hence A is CM-finite.
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(ii) Suppose that M ′ is another small MCM module such that B ′
= EndA(M ′) is

a right quasiresolution of A. By the proof of (i), M ′
∈ add(M) and M ∈ add(M ′).

Therefore add(M) = add(M ′). Hence B and B ′ are graded Morita equivalent. □

Remark 2.4. In [Qin et al. 2019b], the authors extended the theory of noncom-
mutative crepant resolutions for commutative algebras to noncommutative settings.
They proved that noncommutative quasiresolutions for a noetherian N-graded
algebra with Gelfand–Kirillov dimension 2 are always Morita equivalent (see [Qin
et al. 2019b, Theorem 0.6(1)]), which extensively generalizes a similar result in
commutative case (see [Iyama and Wemyss 2013, Theorem 1.5]). We remark that a
noncommutative quasiresolution B in [Qin et al. 2019b] is assumed to be (left and
right) noetherian N-graded Auslander regular and Cohen–Macaulay. In contrast,
we assume that the resolution B is right GAS-regular. Moreover, the method we
used is different from that of [Qin et al. 2019b].

3. Endomorphism rings of CM-finite AS-Gorenstein algebras

In this section, A is an AS-Gorenstein algebra. We will show that the endomorphism
ring of an MCM module over a noncommutative isolated singularity is always right
noetherian, which suggests the existence of resolutions for noncommutative isolated
singularities.

Lemma 3.1. Let A be an AS-Gorenstein algebra which is a noncommutative iso-
lated singularity. Let MA be an MCM module, and let NA be a finitely generated
graded A-module. Then SHomA(M, N ) is finite-dimensional.

Proof. Assume that the injective dimension injdim(AA) = d . Since M is an MCM
module, there is an exact sequence

0 → M τ
→ P−d ∂−d

−→ P−d+1
→ · · · → P0 ∂0

−→ P1
→ · · · ,

where P i is a finitely generated graded projective A-module for all i ≥ −d. Let
X = im ∂0. Then

Extd+1
A (X, N ) = HomA(M, N )/ im(τ ∗),

where τ ∗
: HomA(P−d , N ) → HomA(M, N ) is the induced map. Moreover

im(τ ∗) = PHomA(M, N ) since M is an MCM module. Hence

Extd+1
A (X, N ) = HomA(M, N )/ im(τ ∗) = SHomA(M, N ).

By assumption A is a noncommutative isolated singularity, and hence Extd+1
A (X, N )

is finite-dimensional (see [Smith and Van den Bergh 2013, Proposition 4.3]). □
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We fix a notation which will be used in the proof of the next theorem. For an inte-
ger i and a graded A-module X, we define a graded homomorphism si

: X (i) → X
by setting si (x) = x for all x ∈ X. Then si is a graded homomorphism of degree i .

Theorem 3.2. Let A be an AS-Gorenstein algebra which is a noncommutative
isolated singularity. Let MA be an MCM module. Then EndA(M) is a right
noetherian graded algebra.

Proof. Set B = EndA(M). Let I be a graded right ideal of B and let S be a finite set
consisting of homogeneous elements of I. We write M S

=
∑

b∈S b(M). Then M S

is a submodule of M. Consider the set

X = {M S
| S is a finite set of homogeneous elements of I }.

Since A is noetherian and M is finitely generated, the set X has a maximal object.
Let M S0 be a maximal object in X . For every element b′

∈ I, consider the set
S1 = S0 ∪ {b′

}. Since M S1 ⊇ M S0 , and by assumption M S0 is maximal, it follows
that M S1 = M S0 . Hence b′(M) ⊆

∑
b∈S0

b(M) and M S0 = IM. Set N = IM = M S0 .
Assume that S0 = {b1, . . . , bn}, and that the degrees of b1, . . . , bn are k1, . . . , kn

respectively. Let

φ : M(−k1) ⊕ M(−k2) ⊕ · · · ⊕ M(−kn) → N

be the homomorphism defined by the homomorphisms {b1s−k1, . . . ,bns−kn }. Then φ

is a homomorphism of degree 0.
We next prove that the right ideal I is finitely generated. There are two different

situations.

Case 1. For b′
∈ I, assume the degree of the homomorphism b′ is k, and assume that

the composition M(−k)
s−k
−→ M b′

→ N factors through a graded projective module,
that is, there is a graded projective module P such that b′s−k is the composition
M(−k)

r
→ P t

→ N , where both r and t are homomorphisms of degree 0. Since φ

is an epimorphism, there is a homomorphism

f : P → M(−k1) ⊕ M(−k2) ⊕ · · · ⊕ M(−kn)

such that t = φ f . Then b′s−k
= tr = φ f r . Let h = f r . Then h is a morphism from

M(−k) to M(−k1) ⊕ M(−k2) ⊕ · · · ⊕ M(−kn). Let

h′
: M → M(−k1) ⊕ M(−k2) ⊕ · · · ⊕ M(−kn)

be the homomorphism such that h = h′s−k. Then b′
= φh′. Let

pi : M(−k1) ⊕ M(−k2) ⊕ · · · ⊕ M(−kn) → M(−ki )

be the projection map. Then b′
=

∑n
i=1(bi s−ki )(pi h′). For each i , let h′

i = s−ki pi h′.
Then h′

i is an endomorphism of M. Hence, in this case, b′
=

∑n
i=1 bi h′

i ∈
∑n

i=1 bi B.
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Case 2. Assume b′ does not factor through any projective modules. Since A
is a noncommutative isolated singularity, SHomA(M, N ) is finite-dimensional by
Lemma 3.1. Note that im(b) = bM ⊆ N for any b ∈ I, thus we may view b as an
element in HomA(M, N ) and identify I with a subspace of HomA(M, N ). Then

I = I/(I ∩ PHomA(M, N )) ∼= (I + PHomA(M, N ))/ PHomA(M, N )

is finite-dimensional, for the latter is a subspace of SHomA(M, N ). Choose homo-
geneous elements f1, . . . , fm ∈ I such that their images f 1, . . . , f m in I form a
basis of I. Let b′ be the image of b′ in the quotient space I. Since f 1, . . . , f m

is a basis, we may write b′ = l1 f 1 + · · · + lm f m for some l1, . . . , lm ∈ k. Then
b′

−(l1 f1+· · ·+lm fm)∈ I ∩PHomA(M, N ). By Case 1, b′
−(l1 f1+· · ·+lm fm)=∑n

i=1 bi gi for some g1, . . . , gn ∈ B. Hence b′
= l1 f1 + · · · + lm fm +

∑n
i=1 bi gi .

Summarizing, the right ideal I is generated by f1, . . . , fm, b1, . . . , bn . □

The proof of Theorem 3.2 also implies the following result.

Corollary 3.3. Retain the same notation as in Theorem 3.2. Let N be a finitely
generated graded right A-module. Then HomA(M, N ) is a finitely generated graded
right EndA(M)-module.

We conclude the following result which suggests noncommutative resolutions
for noncommutative singularities.

Proposition 3.4. Let A be an AS-Gorenstein algebra and MA ∈ gr A be an MCM
module. Assume that A is a noncommutative isolated singularity. Then B :=

EndA(M ⊕ A) is a right noetherian graded algebra, and moreover, there is an
equivalence of abelian categories qgr B ∼= qgr A.

Proof. The graded algebra B may be written as a matrix algebra

B =

(
EndA(M) M

M∨ A

)
,

where M∨
= HomA(M, A). Define a map

ϕ : M ⊗A M∨
→ EndA(M), m1 ⊗A f 7→ [m2 7→ m1 f (m2)].

The multiplication of the above matrix algebra reads as(
g1 m1

f1 a1

)(
g2 m2

f2 a2

)
=

(
g1g2 + ϕ(m1 ⊗ f2) g1(m2) + m1a2

f1g2 + a1 f1 f1(m2) + a1a2

)
Let e =

( 0
0

0
1

)
. Then A ∼= eBe, and

BeB =

(
ϕ(M ⊗A M∨) M

M∨ A

)
.
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It is easy to see ϕ(M ⊗A M∨) = PHomA(M, M). Then

B/BeB ∼= SHomA(M, M).

By Lemma 3.1, B/BeB is finite-dimensional. By the graded version of the proof of
[Bao et al. 2019, Lemma 2.3], we obtain the desired equivalence qgr B ∼= qgr A. □

Lemma 3.5. Let A be an AS-Gorenstein algebra which is a noncommutative iso-
lated singularity. Let MA be an MCM module. For X ∈ gr A, define

ϕX : X ⊗A HomA(M, A) → HomA(M, X), x ⊗ f 7→ [m 7→ x f (m)].

Then both ker(ϕX ) and coker(ϕX ) are finite-dimensional.

Proof. Let 0 → K → P → X → 0 be an exact sequence with P a finitely generated
graded projective A-module. Then we have the commutative diagram

K ⊗A HomA(M, A)

ϕK

��

// P ⊗A HomA(M, A)

ϕP

��

// X ⊗A HomA(M, A) //

ϕX

��

0

0 // HomA(M, K ) // HomA(M, P) // HomA(M, X)

with exact rows. Note that ϕP is an isomorphism. By the snake lemma, ker(ϕX ) ∼=

coker(ϕK ).
Since im(ϕX ) = PHomA(M, X), it follows from Lemma 3.1 that coker(ϕX )

is finite-dimensional. Similarly coker(ϕK ) and hence ker(ϕX ) are also finite-
dimensional. □

Theorem 3.6. Let A be an AS-Gorenstein algebra with injdim A ≥ 2 which is a non-
commutative isolated singularity. Assume A is CM-finite. Let {P0 = A, P1, . . . , Pn}

be the set of all the nonisomorphic indecomposable MCM modules (up to degree
shifts). Let M =

⊕n
i=1 Pn ⊕ A. Then B := EndA(M) is a right preresolution of A.

Proof. By Theorem 3.2, B is right noetherian. Since M is an MCM A-module
and A is a noncommutative isolated singularity, it follows from Corollary 3.3
that HomA(M, K ) is finitely generated for every finitely generated graded right
A-module K. Therefore M is a small A-module.

Set F = HomA(M, −) : gr A → gr B and F : qgr A → qgr B to be the induced
functor. We next show that F is an equivalence. By the proof of Proposition 3.4 (see
also [Bao et al. 2019, Lemma 2.3]), the functor G =−⊗A M∨

: gr A → gr B induces
an equivalence of abelian categories G : qgr A → qgr B. Now for any X ∈ gr A,

G(π(X)) = π(X ⊗A M∨) = π(X ⊗A HomA(M, A)).
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Let ϕX : X ⊗A HomA(M, A) → HomA(M, X) be the map as in Lemma 3.5. Then
both ker(ϕX ) and coker(ϕX ) are finite-dimensional, and ϕX induces a natural iso-
morphism

π(X ⊗A HomA(M, A)) ∼= π(HomA(M, X)).

It follows that F is naturally isomorphic to G, and hence an equivalence.
By [Chan et al. 2019, Theorem 5.4] (see also [Leuschke 2007] for the commu-

tative case), r. gldim(B) = d. We remark that in [Chan et al. 2019, Theorem 5.4],
the algebra A is assumed to be Cohen–Macaulay which ensures that AA is a
maximal Cohen–Macaulay module. In our case, AA is automatically maximal
Cohen–Macaulay since A is an AS-Gorenstein algebra, and then all the narratives
in the proof of [Chan et al. 2019, Theorem 5.4] remain true.

Now all conditions in Definition 2.1 are satisfied. Hence B is a right preresolution
of A. □

4. Noncommutative quadric hypersurfaces

In this section, we focus on noncommutative resolutions of noncommutative quadric
hypersurfaces. Let us recall some terminologies.

Let A be a locally finite connected graded algebra. A graded A-module MA is
called a Koszul module (see [Priddy 1970]) if MA has a linear projective resolution;
that is, a projective resolution

· · · → P−n
→ · · · → P−1

→ P0
→ M → 0,

such that P−n is a graded projective module generated in degree n for all n ≥ 0.
If the trivial module kA is a Koszul module, then A is called a Koszul algebra.
It is known that a Koszul algebra A must be quadratic, that is, A may be written
as A = T (V )/(R), where V is a finite-dimensional vector space, and R is con-
tained in V ⊗ V. The quadratic dual of A is defined to be the graded algebra
A!

= T (V ∗)/(R⊥), where R⊥ is the orthogonal dual of R in the space V ∗
⊗ V ∗.

Note that A! is also a Koszul algebra.
For a locally finite graded algebra A, the Hilbert series of A is defined to be the

formal power series:

HA(t) =

∑
i∈Z

(dim Ai )t i .

A noetherian connected graded algebra S is called a quantum polynomial algebra
if the following conditions are satisfied:

(i) S is a Koszul AS-regular algebra;

(ii) the Hilbert series of S is HS(t) =
1

(1−t)d
for some d ≥ 1.
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Let S be a quantum polynomial algebra. Suppose w ∈ S2 is a central regular
element in S of degree two. The quotient algebra A = S/Sw is usually called a
noncommutative quadric hypersurface.

The following properties of noncommutative quadric hypersufaces are well
known (see [Smith and Van den Bergh 2013, Lemma 5.1(1); He and Ye 2019,
Lemma 1.2] for instance). Note that for a quantum polynomial algebra the Goren-
stein parameter coincides with the global dimension.

Lemma 4.1. Assume S is a quantum polynomial algebra with global dimension
d + 1 (d ≥ 0). Let w ∈ S2 be a central regular element of S, and let A = S/Sw.

(i) A is a Koszul algebra.

(ii) A is AS-Gorenstein of injective dimension d with Gorenstein parameter d − 1.

(iii) There is a central regular element ϖ ∈ A!

2 such that S! ∼= A!/A!ϖ .

Setup 4.2. In the rest of this section, S is a quantum polynomial algebra of global
dimension d +1 with d ≥ 0, and w ∈ S2 is a central regular element. Set A = S/Sw.

We recall some results obtained in [Smith and Van den Bergh 2013]. Let Db(gr A)

be the bounded derived category of gr A. There is a Koszul duality (see [Smith and
Van den Bergh 2013, Subsection 2.4], or [Beilinson et al. 1996, Section 3] for the
general situation):

(4.2.1) K : Db(gr A) → Db(gr A!).

Notice that

(4.2.2) K (k)= A!, K (A)=k, K (M(1))= K (M)[−1](1) for all M ∈ Db(gr A).

The above duality induces the following duality:

(4.2.3) K : Db(gr A)/per A → Db(gr A!)/Db
tors(gr A!),

where per A is the full subcategory of Db(gr A) consisting of perfect complexes, and
Db

tors(gr A!) is the full subcategory of Db(gr A!) consisting of complexes with finite-
dimensional total cohomology. Notice that Db(gr A!)/Db

tors(gr A!) ∼= Db(qgr A!).
Let mcm A be the full subcategory of gr A consisting of all the MCM modules, and
let mcm A be the stable category. Then there is a natural equivalence of triangulated
categories [Buchweitz 1986, Theorem 4.4.1(2)]:

(4.2.4) G : mcm A → Db(gr A)/per A.

Combining the functors in (4.2.3) and (4.2.4), we obtain the following, which is
called the Buchweitz duality (see [Smith and Van den Bergh 2013, Theorem 3.2]):

(4.2.5) B : mcm A → Db(qgr A!).
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By Lemma 4.1(iii), there is a central regular element ϖ ∈ A!

2. Let A!
[ϖ−1

] be
the localization of A! by the multiplication set defined by ϖ . Then A!

[ϖ−1
] is a

Z-graded algebra. Define a finite-dimensional algebra (see [Smith and Van den
Bergh 2013, Subsection 5.1]):

(4.2.6) C(A) = A!
[ϖ−1

]0,

which is the degree zero part of A!
[ϖ−1

]. Since S is a quantum polynomial algebra,
it follows that (see [Smith and Van den Bergh 2013])

(4.2.7) dim C(A) =

∑
i≥0

dim S!

2i =
1
2

dim S!.

Notice that A!/A!ϖ is finite-dimensional since it is isomorphic to S!. It follows
that M ∈ tors A! if and only if every m ∈ M is annihilated by some power of ϖ .
Therefore, there is an equivalence

qgr A!
→ mod C(A), π(N ) 7→ N [ω−1

],

where mod C(A) is the category of finite dimension modules. Therefore we have
the following equivalence of triangulated categories:

L : Db(qgr A!) → Db(mod C(A)).

Notice that

(4.2.8) L(π(A!)) = C(A).

Combining L with the Buchweitz duality, we obtain the following equivalence (see
[Smith and Van den Bergh 2013, Proposition 5.2]):

(4.2.9) F : mcm A B
→ Db(qgr A!)

L
→ Db(mod C(A)).

We may put the above mentioned triangle equivalences in the following commu-
tative diagram:

mcm A B //

F
++

G

��

Db(qgr A!)

∼=

��

L // Db(mod C(A))

Db(gr A)/per A K // Db(gr A!)/Db
tors(gr A!)
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We remark that the finite-dimensional algebra C(A) may be obtained from a
Clifford deformation of the Frobenius algebra S! (see [He and Ye 2019]). In this
section, we will give a new method to obtain the finite-dimensional algebra C(A).

Take a minimal graded projective resolution of kA as follows:

(4.2.10) · · · → P−d ∂−d
−→ P−d+1 ∂−d+1

−−→ · · · → P0
→ kA → 0.

Let �d(kA) = ker ∂−d+1 be the d-th syzygy of the trivial module. Since A is a
Koszul algebra, �d(kA) is generated in degree d . We fix notation as follows:

M := �d(kA)(d).

We have the following properties of M.

Lemma 4.3. Retain the notation as above.

(i) M is a Koszul A-module.

(ii) M is an MCM module.

Proof. (i) Since A is a Koszul algebra, the trivial module kA has a linear projective
resolution, which implies M = �d(kA)(d) has a linear projective resolution.

(ii) Since A is AS-Gorenstein of injective dimension d , it follows that Ri0(AA)= 0
for i ̸= d . By the local duality theorem (see [Van den Bergh 1997, Theorem 5.1]),
depth(N ) ≤ d for every finite generated module NA. Applying Ri0 to the short
exact sequence

0 → � j (kA) → P− j+1
→ � j−1(kA) → 0,

we obtain isomorphisms

Ri0(� j−1(kA)) ∼= Ri+10(� j (kA)) for i < d.

Now by using an induction on j, we obtain that M is MCM. □

We investigate more properties of M. For a graded right A-module X, let
X∨

= HomA(X, A) denote the dual module. Clearly X∨ is a graded left A-module
in an obvious way.

Proposition 4.4. Retain the notation as above. Then M∨(1) is a left Koszul A-
module.

Proof. Applying the functor HomA(−, A) to the exact sequence (4.2.10), we obtain
the sequence

(4.4.1) 0 → HomA(P0, A) → HomA(P−1, A)

→ · · · → HomA(P−d+1, A)
ι∨
→ HomA(�(kA), A) → 0.
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Since A is AS-Gorenstein of injective dimension d with Gorenstein parameter d −1,
the sequence (4.4.1) is exact except at the last position, where the cohomology
group is Ak(d − 1). Note that M∨(d) = HomA(�(kA), A). The sequence (4.4.1)
implies an exact sequence of left A-modules

(4.4.2) 0 → K → M∨(d) → Ak(d − 1) → 0,

where K = im ι∨. Note that K has a projective resolution

0 → HomA(P0, A) → HomA(P−1, A) → · · · → HomA(P−d+1, A) → K → 0.

Hence K (−d + 1) is a left Koszul A-module. Since the subcategory of modules
possessing a linear resolution is closed under extensions, the short exact sequence
(4.4.2) implies the Koszulity of M∨(1). □

Proposition 4.5. Retain the notation as above. We have the following properties:

(i) Exti
A(kA, M) = 0 for i < d.

(ii) The graded vector space Extd
A(kA, M) is concentrated in degree −d.

Proof. (i) This follows from the fact that M is an MCM module.

(ii) Since A is AS-Gorenstein, R HomA(−, A) : Db(gr A) → Db(gr A◦) is a duality
(see [Yekutieli 1992]), where A◦ is the opposite algebra of A. Since M is an MCM
module, it follows that R HomA(M, A) ∼= HomA(M, A) = M∨ in Db(gr A◦). Note
that R HomA(kA, A) ∼= Ak[−d](d − 1). Therefore we have

Extd
A(kA, M)i = HomDb(gr A)(kA, M[d](i))

∼= HomDb(gr A◦)

(
R HomA(M, A)[−d], R HomA(kA, A)(i)

)
∼= HomDb(gr A◦)

(
M∨, Ak(d + i − 1)

)
∼= HomDb(gr A◦)

(
M∨(1), Ak(d + i)

)
∼= Homgr A◦

(
M∨(1), Ak(d + i)

)
.

By Proposition 4.4, M∨(1) is generated in degree zero. Thus for i ̸= −d, we
have Homgr A◦(M∨(1), Ak(d + i)) = 0. Hence Extd

A(kA, M) is concentrated in
degree −d . □

Theorem 4.6. Retain the notation as above. We have

(i) Endgr A(M) ∼= C(A);

(ii) A is a noncommutative isolated singularity if and only if Endgr A(M) is semi-
simple.
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Proof. (i) From the resolution (4.2.10), we have the following exact triangle in
Db(gr A):

�d(kA)[d − 1] → P ·
→ kA → �d(kA)[d],

where P · is the complex 0 → P−d+1 ∂−d+1
−−→ · · ·

∂1
→ P0

→ 0. Therefore

(4.6.1) �d(kA)[d] ∼= kA

in the quotient category Db(gr A)/per A. Let F be the equivalence as in (4.2.9).
Considering the equivalence functors (4.2.1)–(4.2.5), we have F(�d(kA)[d]) =

L B(�d(kA)[d]) = L K G(�d(kA)[d]). By (4.6.1), G(�d(kA)[d]) ∼= kA. By (4.2.1)
and (4.2.2), we have F(�d(kA)[d])∼= L K (kA)∼= L(π(A!)). By (4.2.8), L(π(A!))∼=

C(A). Finally, we obtain that

(4.6.2) F(�d(kA)[d]) ∼= C(A).

Since F is an equivalence, we have

Endmcm A(�d(kA)[d]) ∼= EndDb(mod C(A))(C(A)) ∼= C(A),

whereas in the triangulated category mcm A, we have

Endmcm A(M) = Endmcm A(�d(kA)(d)) ∼= Endmcm A(�d(kA))

∼= Endmcm A(�d(kA)[d]).

Therefore,
Endmcm A(M) ∼= C(A).

By Proposition 4.4, M∨(1) is a Koszul module. In particular, M∨ is generated in
degree 1 and Homgr A(M, A) = 0, thus Endmcm A(M) = Endgr A(M) and the desired
isomorphism (i) follows.

The statement (ii) follows from [He and Ye 2019, Theorem 6.3] (see also [Mori
and Ueyama 2019, Theorem 4.13]). □

Since A is a Koszul algebra, we may compute M and Endgr A(M) by Koszul
resolution of A. Now assume A = T (V )/(R) for some finite-dimensional vector
space V with generating relations R ⊆ V ⊗ V. Let C0 = k, C1 = V, C2 = R and
Cn =

⋂
i+ j=n−2 V ⊗i

⊗ R ⊗ V ⊗ j for n > 2. Then the minimal projective resolution
of kA reads as follows (see [Beilinson et al. 1996]):

(4.6.3) · · · → Cn ⊗ A ∂−n
−→ Cn−1 ⊗ A ∂−(n−1)

−−→ · · ·
∂−1
−→ C0 ⊗ A → kA → 0,

where the differential is defined as follows: if
∑m

i=1 x1i ⊗ · · · ⊗ xni ∈ Cn , for every
a ∈ A,

∂−n
(( m∑

i=1

x1i ⊗ · · · ⊗ xni

)
⊗ a

)
=

m∑
i=1

(x1i ⊗ · · · ⊗ xn−1,i ) ⊗ xni a.
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By the above resolution, �d(kA) ∼= im ∂−d. Consider the exact sequence

0 → im ∂−d−1
→ Cd ⊗ A → �d(kA) → 0.

Since Cd ⊗ A is the projective cover of �d(kA) and is generated in degree d , we get

(4.6.4) Endgr A(�d(kA)) ∼= { f ∈ Endgr A(Cd ⊗ A) | f (im ∂−d−1) ⊆ im ∂−d−1
}.

Notice that the restriction of ∂−d−1 on (Cd+1 ⊗ A)d+1 ∼= Cd+1 is injective, and
every element f ∈ Endgr A(Cd ⊗ A) is defined by its restriction on Cd . We thus
have the isomorphism

(4.6.5)
{

f ∈ Endgr A(Cd ⊗ A) | f (im ∂−d−1) ⊆ im ∂−d−1}
∼=

{
f ∈ Endk(Cd) | ( f ⊗ 1)(Cd+1) ⊆ Cd+1

}
.

Combining (4.6.4) and (4.6.5), we have the following isomorphism.

Proposition 4.7. Write A = T (V )/(R). We have

Endgr A(M) ∼= { f ∈ Endk(Cd) | ( f ⊗ 1)(Cd+1) ⊆ Cd+1},

where Cn =
⋂

i+ j=n−2 V ⊗i
⊗ R ⊗ V ⊗ j for n = d, d + 1, and f ⊗ 1 is viewed as a

linear map in Endk(Cd ⊗ V ).

Remark 4.8. The proposition above provides a relatively easy way to compute
the endomorphism ring of M, especially when d is small. We will compute a
detailed example of noncommutative quadric hypersurface of dimension 2 in the
next section. According to Theorem 4.6 and the proposition above, to find whether A
is a noncommutative isolated singularity is a linear algebra problem.

Let us check the MCM modules when A is a noncommutative isolated singularity.

Lemma 4.9. Assume that A is a noncommutative isolated singularity. Each non-
projective indecomposable MCM A-module is isomorphic to a direct summand of
M (up to a degree shift).

Proof. By the isomorphism (4.6.2) in the proof of Theorem 4.6, F(�d(kA)) ∼=

C(A)[−d]. Since C(A) is semisimple and F is an equivalence, all the indecom-
posable objects in mcm A are direct summands of �d(kA) (up to degree shifts).
Notice that the class of nonprojective indecomposable MCM module over A is in
one-to-one correspondence to the class of indecomposable objects in mcm A (see
[Smith and Van den Bergh 2013, Lemma 3.4]). Since M is a shift of �d(kA), the
result follows. □

We have the following properties of indecomposable MCM modules.
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Proposition 4.10. Retain the notation as above and keep Setup 4.2. Assume that A
is a noncommutative isolated singularity.

(i) For n ≥ d , dim �n(kA)n =
1
2 dim S!, where �n(kA)n is the degree n part of the

graded module �n(kA).

(ii) dim M0 = dim Endgr A(M).

(iii) Suppose that Endgr A(M) is a direct product of k. If N is an indecomposable
MCM module, then N (i) ∼= A/x A for some i ∈ Z and some element x ∈ A1.
Moreover, �(M) ∼= M(−1).

Proof. (i) By Lemma 4.1(ii), we have the exact sequence

0 → A!(−2)
·ϖ
−→ A!

→ S!
→ 0.

Then we have dim A!

i = dim A!

i−2 + dim S!

i for all i ≥ 2, and dim A!

i = dim S!

i for
i = 0, 1. Then by an iterative computation, we have

dim A!

n =

{
dim S!

0 + dim S!

2 + · · · + S!
n when n is even;

dim S!

1 + dim S!

3 + · · · + S!
n when n is odd.

Since S is a quantum polynomial algebra, HS!(t) = (1+ t)d+1. Therefore dim A!
n =

1
2 dim S! for n ≥ d. Since A is a Koszul algebra, we have

dim A!

n = dim Homgr A(�n(kA)(n), kA) = dim �n(kA)n,

and therefore dim �n(kA)n =
1
2 dim S!.

(ii) By Theorem 4.6, Endgr A(M) ∼= C(A). Hence dim Endgr A(M) = dim C(A) =
1
2 dim S! (see (4.2.7)). Since M = �d(kA)(d), the identity follows from (i).

(iii) By Lemma 4.9, it suffices to show that the result holds for each indecomposable
direct summand N of M.

Assume M = M1
⊕· · ·⊕Ms, where each Mi is indecomposable. By assumption

Endgr A(M) is a direct product of k, which forces that Endgr A(Mi ) = k for all i and
Homgr A(Mi , M j )=0 for i ̸= j . Hence s =dim Endgr A(M), and M has no projective
direct summands, otherwise if some Mi is projective, then Homgr A(Mi , M j ) ̸= 0
for any j. Since M is a Koszul module, each Mi is a Koszul module. Hence Mi is
generated in degree 0 for every i . By (i) and (ii), s = dim M0 =

1
2 dim S!. Therefore,

each Mi is a cyclic module. Hence we have the exact sequence

0 → �(Mi ) → A → Mi
→ 0 for all 1 ≤ i ≤ s.

Then �d+1(kA)(d) ∼= �(M) ∼=
⊕s

i=1 �(Mi ). By (i), dim �d+1(kA)d+1 = s. Hence
dim �(Mi )1 = 1 for all 1 ≤ i ≤ s since each Mi is not projective. Note that �(Mi )

is generated in degree 1. It follows that there is an element xi ∈ A1 such that
�(Mi ) ∼= xi A for all 1 ≤ i ≤ s. Hence Mi ∼= A/xi A.
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Since Homgr A(Mi , M j ) = 0 for i ̸= j, we have Mi ≇ M j if i ̸= j. Therefore
�(Mi ) ≇ �(M j ) for i ̸= j since � = [−1] is the suspension functor in the
triangulated category mcm A. Since each �(Mi ) is indecomposable and generated
in degree 1, it follows that the set {�(M1), . . . , �(Ms)} = {M1(−1), . . . , Ms(−1)}

by Lemma 4.9. Therefore �(M) ∼= M(−1). □

Lemma 4.9 also provides a way to construct noncommutative resolution of
noncommutative isolated singularities.

Theorem 4.11. Keep the notions in Setup 4.2. Assume that A is a noncommuta-
tive isolated singularity. Then B = EndA(M ⊕ A) is a right preresolution of A.
Moreover, B is concentrated in nonnegative degrees.

Proof. That B is a right preresolution of A follows from Theorem 3.6 and Lemma 4.9.
Since M is a Koszul module, B is concentrated in nonnegative degrees. □

Remark 4.12. The algebra B is isomorphic to the matrix algebra
(EndA(M)

M∨

M

A

)
. By

Proposition 4.4, M∨ is concentrated in degrees not less than 1. By Proposition 4.5(ii),
every element f ∈ EndA(M)≥1 factors through a projective module. By [McConnell
and Robson 1987, Proposition 7.5.1],

B0 =

(
Endgr A(M) M0

0 k

)
is of global dimension 1, since Endgr A(M) is semisimple by assumption. In the next
section, we give a concrete example with detailed computations of elements of B.

5. An example

In this section, we give a detailed computation of indecomposable MCM mod-
ule of an explicit noncommutative quadric hypersurfaces. Let k = C, let S =

k⟨x, y, z⟩/(R), where R = span{xz + zx, yz + zy, x2
+ y2

}. Then S is a quantum
polynomial algebra of global dimension 3, which is an AS-regular algebra of type S2

as listed in [Artin and Schelter 1987, Table 3.11, p. 183].
The following facts were proved in [He and Ye 2019, Setion 9]; see also [Hu

2022] for a complete classification of noncommutative conics.

Lemma 5.1. Let ϖ = x2
+ z2

∈ S2. Then

(i) ϖ is a central regular element of S,

(ii) A = S/Sϖ is a noncommutative isolated singularity,

(iii) C(A) ∼= k4, where C(A) is the algebra defined in (4.2.6).

Let V = span{x, y, z}, and write A = T (V )/(R′), where R′ is spanned by

x ⊗ z + z ⊗ x, y ⊗ z + z ⊗ y, x ⊗ x + y ⊗ y, x ⊗ x + z ⊗ z.
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Consider the Koszul resolution of kA:

· · · → ((R′
⊗ V ) ∩ (V ⊗ R′)) ⊗ A ∂−3

−→ R′
⊗ A ∂−2

−→ V ⊗ A ∂−1
−→ A → kA → 0.

By a direct calculation, (R′
⊗ V ) ∩ (V ⊗ R′) has a basis

(x ⊗ z + z ⊗ x) ⊗ x + (y ⊗ z + z ⊗ y) ⊗ y + (x ⊗ x + y ⊗ y) ⊗ z,

2(x ⊗ z + z ⊗ x) ⊗ x + (y ⊗ z + z ⊗ y) ⊗ y
+ (x ⊗ x + y ⊗ y) ⊗ z + (x ⊗ x + z ⊗ z) ⊗ z,

(y ⊗ z + z ⊗ y) ⊗ z − (x ⊗ x + y ⊗ y) ⊗ y + (x ⊗ x + z ⊗ z) ⊗ y,

(x ⊗ z + z ⊗ x) ⊗ z + (y ⊗ z + z ⊗ y) ⊗ z
− (x ⊗ x + y ⊗ y) ⊗ y + (x ⊗ x + z ⊗ z) ⊗ (x + y).

Set M =�2(kA)(2)= im ∂−2(2). Then M is a Koszul module which is generated
by 1

2 dim S!(= 4) elements, see Proposition 4.10(i). The set of relations between
the generators of M is equal to im ∂−3(2) which is also generated by 4 elements.
Thus we may write M as a quotient module of a free module:

0 → K → m1 A ⊕ m2 A ⊕ m3 A ⊕ m4 A → M → 0,

where {m1, m2, m3, m4} is a free basis, and K is the submodule generated by

r1 = m1x + m2 y + m3z,

r2 = 2m1x + m2 y + m3z + m4z,

r3 = m2z − m3 y + m4 y,

r4 = m1z + m2z − m3 y + m4(x + y).

To find indecomposable MCM A-modules, we only need to find a set of primitive
idempotents of Endgr A(M) by Lemma 4.9. Let F = m1 A ⊕ m2 A ⊕ m3 A ⊕ m4 A.
Note that the degree one part of K is K1 = span{r1, r2, r3, r4}. We have

Endgr A(M) = {θ ∈ Endgr A(F) | θ(r j ) ∈ K1, j = 1, 2, 3, 4}.

By some computations on linear equations, we have

Endgr A(M) =




b + d 0 a a
0 b c 0
0 −c b 0
a c d b + d

 : a, b, c, d ∈ k

 .
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We have the following complete set of primitive idempotents in Endgr A(M):

e1 =


0 0 0 0

0 1
2

1
2 i 0

0 −
1
2 i 1

2 0

0 1
2 i −

1
2 0

 , e2 =


0 0 0 0

0 1
2 −

1
2 i 0

0 1
2 i 1

2 0

0 −
1
2 i −

1
2 0

 ,

e3 =


1
2 0 1

2
1
2

0 0 0 0

0 0 0 0
1
2 0 1

2
1
2

 , e4 =


1
2 0 −

1
2 −

1
2

0 0 0 0

0 0 0 0

−
1
2 0 1

2
1
2

 ,

where i =
√

−1 is a square root of −1. Therefore, we have the following non-
projective nonisomorphic indecomposable MCM modules:

M1
= Me1 = (m2 − im3 + im4)A,

M2
= Me2 = (m2 + im3 − im4)A,

M3
= Me3 = (m1 + m4)A,

M4
= Me4 = (m1 − m4)A,

where m1, m2, m3, m4 are the image of m1, m2, m3, m4 in M.
Since M1, . . . , M4 are Koszul modules, a straightforward check shows that

M1 ∼= A/(y+i z)A, M2 ∼= A/(y−i z)A, M3 ∼= A/(x+z)A, M4 ∼= A/(x−z)A.

Note that y + i z, y − i z, x + z, x − z are nilpotent elements in A. Also, we have

A/(y + i z)A ∼= (y + i z)A(1), A/(y − i z)A ∼= (y − i z)A(1),

A/(x + z)A ∼= (x + z)A(1), A/(x − z)A ∼= (x − z)A(1).

Summarizing, we have the following conclusion.

Proposition 5.2. The quadric hypersurface A has nonprojective nonisomorphic
indecomposable MCM modules (up to degree shifts):

M1 ∼= A/(y + i z)A ∼= (y + i z)A(1),

M2 ∼= A/(y − i z)A ∼= (y − i z)A(1),

M3 ∼= A/(x + z)A ∼= (x + z)A(1),

M4 ∼= A/(x − z)A ∼= (x − z)A(1).

By Theorem 4.11, A has a right preresolution EndA(M ⊕ A). Write u1 = y + i z,
u2 = y − i z, u3 = x + z, u4 = x − z. Note that A is an AS-Gorenstein algebra (see
Lemma 4.1(ii)). Since A/ui A is an MCM module, we have Ext1

A(A/ui A, A) = 0
for each 1 ≤ i ≤ 4. Hence the map τ∨

: HomA(A, A) → HomA(ui A, A) induced
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from the inclusion map τ : ui A → A is surjective. Therefore, for each homogeneous
element f ∈ HomA(ui A, A), there is a homogeneous element a ∈ A such that
f (ui ) = aui . On the other hand, for each homogeneous element a ∈ A, there is a
graded right A-module morphism f : ui A → A defined by f (ui ) = aui . Hence,
we obtain HomA(ui A, A) ∼= Aui (1).

Since A is AS-Gorenstein, mcm A is semisimple and C(A) ∼= EndA(M) ∼= k4,
by the equivalence functor (4.2.9), we have Ext1

A(ui A, u j A) = 0 for all i ̸= j and
Ext1

A(ui A, ui A) ∼= k. Therefore, the exact sequence 0 → ui A → A → A/ui A → 0
induces a surjective map HomA(A, u j A) → HomA(ui A, u j A) for i ̸= j . Then we
get HomA(ui A, u j A) = u j Aui (1) for i ̸= j . Similarly, EndA(ui A) = k⊕ui Aui (1)

for i = 1, 2, 3, 4. Then EndA(M ⊕ A) is isomorphic to the algebra
u1 Au1(1) u1 Au2(1) u1 Au3(1) u1 Au4(1) u1 A(1)

u2 Au1(1) u2 Au2(1) u2 Au3(1) u2 Au4(1) u2 A(1)

u3 Au1(1) u3 Au2(1) u3 Au3(1) u3 Au4(1) u3 A(1)

u4 Au1(1) u4 Au2(1) u4 Au3(1) u4 Au4(1) u4 A(1)

Au1 Au2 Au3 Au4 A≥1


⊕


k 0 0 0 0
0 k 0 0 0
0 0 k 0 0
0 0 0 k 0
0 0 0 0 k

 ,

where the multiplication is defined as below. For consistency of notations we set
u5 = 1. We simply write elements in the left matrix as (ui ai j u j ). Then

(ui ai j u j )(ui bi j u j ) =

( 5∑
k=1

ui aikukbk j u j

)
.
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